A generalization of the category O of Bernstein–Gelfand–Gelfand

نویسنده

  • Guillaume Tomasini
چکیده

In the study of simple modules over a simple complex Lie algebra, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this note, we define a family of categories which generalizes the BGG category. We classify the simple modules for some of these categories. As a consequence we show that these categories are semisimple. To cite this article: 1. Weight modules and Generalized Verma Modules Let g denote a simple Lie algebra over C and U(g) denote its universal enveloping algebra. Let h be a fixed Cartan subalgebra and denote by R the corresponding set of roots. For α ∈ R we denote by Hα ∈ h the corresponding co–root and by g the rootspace for the root α. We will denote by ∆ a set of simple roots. We write R for the corresponding set of positive roots. For a subset θ ⊂ ∆, we denote by 〈θ〉 the set of all roots which are linear combination of elements of θ and set 〈θ〉 = 〈θ〉 ∩ R. We consider the following subalgebras of g : lθ = h ⊕ ∑

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 00 BERNSTEIN – GELFAND – GELFAND SEQUENCES

This paper is devoted to the study of geometric structures modeled on homogeneous spaces G/P , where G is a real or complex semisimple Lie group and P ⊂ G is a parabolic subgroup. We use methods from differential geometry and very elementary finite–dimensional representation theory to construct sequences of invariant differential operators for such geometries, both in the smooth and the holomor...

متن کامل

ON COMMUTATIVE GELFAND RINGS

A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...

متن کامل

Structure of modules induced from simple modules with minimal annihilator

We study the structure of generalized Verma modules over a semi-simple complex finite-dimensional Lie algebra, which are induced from simple modules over a parabolic subalgebra. We consider the case when the annihilator of the starting simple module is a minimal primitive ideal if we restrict this module to the Levi factor of the parabolic subalgebra. We show that these modules correspond to pr...

متن کامل

Some Applications of Gelfand Pairs to Number Theory

The classical theory of Gelfand pairs has found a wide range of applications, ranging from harmonic analysis on Riemannian symmetric spaces to coding theory. Here we discuss a generalization of this theory, due to Gelfand-Kazhdan, and Bernstein, which was developed to study the representation theory of p-adic groups. We also present some recent number-theoretic results, on local e-factors and o...

متن کامل

Wall - Crossing Functors and D - Modulesalexander Beilinson

We study Translation functors and Wall-Crossing functors on inn-nite dimensional representations of a complex semisimple Lie algebra using D-modules. This functorial machinery is then used to prove the Endomorphism-theorem and the Structure-theorem; two important results were established earlier by W. Soergel in a totally diierent way. Other applications to the category O of Bernstein-Gelfand-G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009